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Abstract—In the field of assistive technology, adaptive robotic
manipulators offer a promising avenue for improving the stan-
dard of living for those who have impairments. This paper details
a simulation study of an advanced robotic manipulator developed
for feeding and drinking assistance. The simulation features a
detailed model of three robotic arm outfitted with a specialized
gripper and a spoon-like attachment, showcasing the robot’s
capacity to adjust to various user requirements and environ-
mental conditions. Key innovations include the robot’s real-time
adaptation to user-specific feeding angles, precise control of liquid
dispensing for drinking, and the creation of intuitive human-
robot interaction protocols using reinforcement learning. The
system’s performance is assessed within a simulated environment
that includes a human model interacting with the robot at a
dining setup, showing the robot’s ability to execute assistive
actions with high precision and safety. Preliminary findings
suggest that these robotic systems have significant potential to
offer reliable and autonomous assistance, thereby enhancing
independence and alleviating caregiver workload.

Index Terms—reinforcement learning,assistive robots,openAI
gym

I. INTRODUCTION

Robotic technology has revolutionized many areas, with as-
sistive robotics becoming a vital field of research. These robots
are designed to help individuals with disabilities, improving
their quality of life by assisting with everyday activities.
Feeding and drinking assistance are especially important,
as they directly affect a person’s independence and well-
being. This study explores the capabilities of three robotic
manipulators—Jaco, Sawyer, and Baxter—in providing such
assistance. The research focuses on evaluating the adaptability
and efficiency of these robots by comparing three advanced
reinforcement learning algorithms: Proximal Policy Optimiza-
tion (PPO), Soft Actor-Critic (SAC) and Deep Deterministic
Policy Gradient (DDPG). Through realistic simulations of
human-robot interactions, the study aims to identify the best
robot-algorithm combinations, offering valuable insights for

the development of more advanced and responsive assistive
robotic systems.

II. LITERATURE REVIEW

Assistive Gym, an open-source physics simulation frame-
work, models daily tasks and human preferences to optimize
robotic assistance. Leveraging reinforcement learning, it has
demonstrated enhanced performance in assistive tasks and
serves as a valuable tool for advancing research in assistive
robotics [1].Improvements were made to a feedback system
from sensors for robot assistive pouring tasks by integrating
various signals. This optimized feedback setup significantly
outperformed standard or random designs, resulting in better
task performance and reduced cognitive effort [2].Remote
tongue control and semi automation have been applied to
assistive robotic arms for individuals with tetraplegia. Find-
ings indicate that semi automation reduces gripping time and
command frequency compared to manual control, improving
ease of use and independence for users with severe dis-
abilities [3].A hands-free control system combining surface
electromyography (sEMG), eye-tracking, and a gyroscope has
been developed for operating an assistive robotic arm (ARM)
in virtual reality. Results show that individuals with tetraplegia
can successfully complete complex tasks with this system,
with a clear preference for sEMG controls, enhancing their
independence and quality of life [4].Manipulation Primitive
Augmented Reinforcement Learning (MAPLE) advances re-
inforcement learning through the integration of behaviour
primitives, leading to enhanced performance in simulated
manipulation tasks and effective implementation in real-world
scenarios [5].An effective framework is offered for using
Deep Reinforcement Learning (DRL) in robotic arm con-
trol, emphasizing the integration of simulations using the
Robosuite platform and essential tools, along with possible
industrial uses like bin picking operations for warehouses
[6]. The development and optimization of FOODIEBOT, a
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food delivery robot, involved several algorithms (BAS, PSO,
POA, EO) to enhance its performance across different paths.
The BAS method was found to be superior in accuracy and
execution time, while other algorithms varied in speed and
path efficiency, confirming the real-world applicability of the
simulation results [7].A DQN-based reinforcement learning
approach is proposed for solving 7-DOF manipulator IK,
offering a stable, efficient alternative for generating joint-space
trajectories and adaptable across robotic systems [8].A deep
reinforcement learning (DRL) method improves trajectory
planning for manipulators in dynamic environments, using
a dynamic action selection strategy and a combined reward
function to boost convergence up to 3-5 times in Deep
Deterministic Policy Gradient (DDPG), Twin Delayed Deep
Deterministic Policy Gradient (TD3), and Soft Actor-Critic
(SAC) algorithms [9].A novel framework and metrics are
introduced to select and assess Deep Reinforcement Learning
(DRL) models for dynamic pricing [10].A robot-assisted feed-
ing system for mobility impaired individuals is demonstrated,
ensuring safety, portability, and user control, with a custom
web-app for control and real-time bite transfer [11].

A. Research context

Existing reinforcement learning systems need to be general-
ized to work across different users and various types of food,
ensuring consistent performance.The balance between safety,
portability, and performance remains a challenge. There is a
need for robust systems that can ensure user safety without
compromising on portability and operational efficiency. Im-
provement in real-time error handling mechanisms is crucial
to address unexpected issues during feeding tasks and drinking
task, ensuring seamless operation.

III. METHODOLOGY

The simulations are performed in the Assistive Gym en-
vironment, which offers realistic physical interactions and
detailed human-robot collaboration models. The environment
includes three robotic arms—Jaco, Baxter, and Sawyer robots
are chosen for simulations due to their adaptable design
and precision in assistive tasks, which enable high reward
functions. Virtual representations of individuals with physical
disabilities are used to simulate the human aspect, while the
dining setup mimics real-world conditions with a table, chair,
and feeding apparatus.

A. Robots

1) Jaco : The Jaco robot, designed for assistive appli-
cations, features a lightweight yet robust construction,
emphasizing precision and adaptability. Its kinematic de-
sign includes a 6-degree-of-freedom (DOF) arm, which
allows for a broad range of motion and dexterity, critical
for tasks requiring fine manipulation.The gripper is
engineered with customizable fingers and a specialized
spoon-like attachment, offering nuanced control suited
for feeding tasks

Fig. 1. Jaco robot

2) Baxter : The Baxter robot, designed for both industrial
and research environments, features a dual-arm system
with 7 degrees of freedom (DOF) per arm. Each arm is
equipped with advanced joint torque sensors and high-
resolution encoders for detailed feedback and accurate
movement. It comes with a custom gripper and a spoon-
like tool, both incorporating force-sensitive resistors and
motorized adjustments to handle delicate feeding tasks.It
is mounted on a mobile base with omni-directional
wheels.

Fig. 2. Baxter robot
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3) Sawyer : The Sawyer robot, celebrated for its precision
and versatility, is a single-arm manipulator designed for
complex tasks. It has a 7-degree-of-freedom (DOF) arm
equipped with advanced force-torque sensors and high-
resolution encoders for detailed control and movement
feedback. Sawyer’s gripper and a variety of tools allow
it to adjust to different tasks, including feeding and
drinking assistance.

Fig. 3. Sawyer robot

B. Algorithm

1) PPO : The Proximal Policy Optimization(PPO) uses a
neural network policy and a value network to optimize
the Proximal Policy Optimization algorithm, ensuring
stable learning and accurate estimation of the value
function.

Algorithm 1 Proximal Policy Optimization
for i ∈ {1, · · · , N} do

Set the policy πθ for T timesteps, collecting {st, at, rt}
Predicting the advantages Ât =

∑
t′>t γ

t′−trt′ − Vϕ(st)
πold ← πθ

for j ∈ {1, · · · ,M} do
JPPO(θ) =

∑T
t=1

πθ(at|st)
πold(at|st)

Ât − λKL[πold|πθ]

Update θ by a gradient method w.r.t. JPPO(θ)
end for
for j ∈ {1, · · · , B} do
LBL(ϕ) = −

∑T
t=1(

∑
t′>t γ

t′−trt′ − Vϕ(st))
2

Update ϕ by a gradient method w.r.t. LBL(ϕ)
end for
if KL[πold|πθ] > βhighKLtarget then
λ← αλ

else if KL[πold|πθ] < βlowKLtarget then
λ← λ/α

end if
end for

2) SAC : The Soft Actor-Critic algorithm(SAC) optimizes
policy networks, promoting exploration, by mapping
observations to probability distributions over actions,
and automatically adjusting temperature parameters to
maintain balance.

Algorithm 2 Soft Actor-Critic
Set the parameter vectors to ψ, ψ̄, θ, ϕ.
for each loop do

for each environment step do
at ∼ πϕ(at|st)
st+1 ∼ p(st+1|st, at)
D ← D ∪ {(st, at, (st, at), st+1)}

end for
for each gradient step do
ψ ← ψ − λV ∇̂ψJV (ψ)
θi ← θi − λQ∇̂θJQ(θi) for i ∈ {1, 2}
ϕ← ϕ− λπ∇ϕJπ(ϕ)
ψ̄ ← τϕ+ (1− τ)ψ̄

end for
end for

3) DDPG : Deep Deterministic Policy Gradient (DDPG) is
a reinforcement learning method for continuous actions,
involving actors and critics, storing past experiences, up-
dating networks, and introducing noise for exploration.

Algorithm 3 Deep Deterministic Policy Gradient
Set the parameter vectors to Q(s, a|θQ) and actor µ(s|θµ)
with weights θQ and θµ.
Set the target network Q′ and µ′ with weights θQ

′ ← θQ,
θµ

′ ← θµ

Set the replay buffer R
for episode = 1, M do

Set a random process N for action investigation
Get initial observation state s1
for t = 1, T do

Select action at = µ(st|θµ) + Nt according to the
current policy and investigation noise
Set the action at and observe reward rt and see the
new state st+1

Store transition (st, at, rt, st+1) in R
Sample a random small batch of N transitions
(si, ai, ri, si+1) from R
Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

)
Update critic by reducing the loss: L = 1

N

∑
i(yi −

Q(si, ai|θQ))2
Update the actor policy with the sampled policy gra-
dient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|si

Update the target networks:

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

end for
end for
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C. Human posture study

We observed the human to be seated on a wheelchair as we
wanted to provide feeding and drinking assistance to patients
with Parkinson disease as under our observation most of these
patients tend to be seated on a wheelchair in hospitals when
they are being treated by a nurse.

IV. RESULTS

A. Simulation output

In the Fig.4. we can observe the simulation output for Jaco
robot providing feeding assistance to the patient.

Fig. 4. Jaco feeding assistance simulation

In the Fig.5. we can observe the simulation output for Baxter
robot providing feeding assistance to the patient.

Fig. 5. Baxter feeding assistance simulation

In the Fig.6. we can observe the simulation output for
Sawyer robot providing feeding assistance to the patient.

Fig. 6. Sawyer feeding assistance simulation

In the Fig.7. we can observe the simulation output for Jaco
robot providing drinking assistance to the patient.

Fig. 7. Jaco drinking assurance simulation

In the Fig.8. we can observe the simulation output for Baxter
robot providing drinking assistance to the patient.

Fig. 8. Baxter drinking assistance simulation

In the Fig.9. we can observe the simulation output for
Sawyer robot providing drinking assistance to the patient.
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Fig. 9. Sawyer drinking assistance simulation

B. Tables

For 10,000,000 time steps, or 50,000 simulation rollouts
(trials), we use 36 concurrent simulation actors to train each
policy. In a simulated rollout, a policy can perform a new
action at every 200 time steps (20 seconds of time for
simulation at 10 time steps per second). Every 7,200 time
steps, or when each actor finishes a single simulation trial, we
update the policy every 10 epochs.

TABLE I
AVERAGE REWARDS AND TASK SUCCESS FOR 100 TRIALS FOR FEEDING

ASSISTANCE TASK

Algorithm Jaco Baxter Sawyer Success
PPO 83.6 108.1 95.4 87%
SAC 105.1 107.3 110.5 88%

DDPG 130 98.7 107.6 83%

TABLE II
AVERAGE REWARDS AND TASK SUCCESS FOR 100 TRIALS FOR DRINKING

ASSISTANCE TASK

Algorithm Jaco Baxter Sawyer Success
PPO 85.7 263.3 436.0 72%
SAC 402.6 466.8 464.0 73%

DDPG 108 371.88 441.2 78%

The reward function reflects how well different algorithms
(PPO, SAC, DDPG) perform in feeding and drinking assis-
tance tasks with various robots (Jaco, Baxter, Sawyer).The
results show that the success rate and rewards vary depending
on the task and the robot used, with an average success rate
of 86% for feeding and 74.33% for drinking, highlighting the
importance of selecting the right algorithm for specific tasks.

C. Graph

Fig 10,11,12,13,14,15 shows the graphs for validation of
task success and food rewards for each robot in different
feeding and drinking scenarios.

Fig. 10. Jaco feeding assistance graph

Fig. 11. Baxter feeding assistance graph

Fig. 12. Sawyer feeding assistance graph

Fig. 13. Jaco drinking assistance graph

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on May 29,2025 at 13:40:06 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 14. Baxter drinking assistance graph

Fig. 15. Sawyer drinking assistance graph

The connection between task accomplishment and reward
is intricate and diverse, varying greatly across different sit-
uations. These complex patterns likely stem from a mix of
different reward systems and experimental setups.

CONCLUSION

This study has systematically evaluated the performance of
three robotic manipulators—Jaco, Sawyer, Baxter—in the con-
text of assistive feeding and drinking tasks. By implementing
and comparing the Proximal Policy Optimization (PPO) ,Soft
Actor-Critic (SAC) algorithm and Deep Deterministic Policy
Gradient(DDPG), we have identified the relative strengths
and weaknesses of each robot-algorithm pair. Our findings
indicate that while some robots excel in precision and safety,
others demonstrate faster adaptation to task variations. The
comparative analysis reveals that no single algorithm consis-
tently outperforms the other across all robots, stating that the
algorithm chosen should be customized for the particular robot
and task requirements. Overall, this study contributes to the
ongoing efforts to improve the capabilities of assistive robots,
potentially enhancing the standard of living for those who have
physical disabilities.

We would like to transition from simulation to real-world
environments to validate the findings under more complex
and unpredictable conditions using robots built using custom
hardware which would be lightweight in nature instead of

standard robots like Jaco,Baxter and Sawyer. This will involve
addressing challenges such as sensor noise, actuation delays,
and physical interactions with humans. Introducing real-time
monitoring or fail-safe mechanisms to prevent accidents would
be an important area to consider in future work.
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